
Real-World Functional
Programming

James Earl Douglas
@jearldouglas

Kelley Robinson
@kelleyrobinson

bit.ly/real-world-fp

http://bit.ly/real-world-fp
http://bit.ly/real-world-fp

Key Concepts

● Statelessness

● Immutable data

● Referential transparency

Characteristics that differentiate functional programming

Statelessness

function add(a,b) {
 return a + b;
}

var x = add(1,1) // 2
var y = add(1,1) // 2
var z = add(1,1) // 2

add always returns the same output for a given input

Immutable data

var x = “hello” // “hello”

var y = x + “, world” // “hello, world”

var z = y.substring(0,5) // “hello”

Referential transparency

var x = 1
● x is a synonym for 1

var y = x + 1
● y is a synonym for x + 1

● y is also a synonym for 2

x = 2
● This is a lie, equivalent to 1 = 2

Benefits

● Easily abstractable

● Applications become modular and composable

● Encourages code reuse

Why you should use functional programming

We had a problem . . .

Architectural issues

● Locked into using one data structure

● Clumsy persistent data model

● Bottlenecked deployment

Existing API design had limitations

Let’s refactor
Using functional concepts to solve our problems.

Example - ATM

Withdraw - bad!

function withdraw(amount) {
 if (balance >= amount) {
 balance = balance - amount
 return amount
 } else {
 return 0
 }
}

Withdraw - bad!

Withdraw - good!

function withdraw(amount) {
 return function(balance) {
 if (balance >= amount) {
 return [amount, balance - amount]
 } else {
 return [0, balance]
 }
 }
}

Withdraw - good!

Check balance

Generate report

Generate report
(in Spanish)

Withdraw - in Bitcoin

function convertToBtc(withdrawal) {
 return function(balance) {
 var result = withdrawal(balance)
 // [amount, new balance]
 var inBtc = result[0] / 575.0
 var fee = result[0] * 0.01
 return [inBtc, result[1] - fee]
 }
}

var get20InBtc = convertToBtc(withdraw(20))

Withdraw - in Bitcoin

Live code time

bit.ly/real-world-fp

http://bit.ly/real-world-fp
http://bit.ly/real-world-fp

Benefits

● Easily abstractable

● Applications become modular and composable

● Encourages code reuse

Why you should use functional programming

Thank you!
kelley@versal.com
@kelleyrobinson

james@versal.com
@jearldouglas

bit.ly/real-world-fp

http://bit.ly/real-world-fp
http://bit.ly/real-world-fp

